数据矿工的博客

您现在的位置是:首页 > 数据分析技术 > 正文

数据分析技术

数据治理的概念与意义目标

admin2022-09-02数据分析技术86
一、数据治理概述(一) 数据治理概念

一、数据治理概述

(一) 数据治理概念

数据治理是指将数据作为组织资产围绕数据全生命周期而展开的相关管控活动、绩效和风险管理工作的集合,以保障数据及其应用过程中的运营合规、风险可控和价值实现。

数据治理体系是指从组织架构、管理制度、IT应用技术、绩效考核等多个维度对组织的数据架构、元数据、数据质量、数据标准、数据安全、数据生命周期等各方面进行全面的梳理、建设并持续改进的体系。

(二) 数据治理目标

结合当前行业组织信息化发展过程中数据业务相关的应用需求,以“风险可控、运营合规、价值实现”为数据治理总体目标

1) 运营合规:组织应建立符合法律、规范和行业准则的数据合规管理体系,并通过评价评估、数据审计和优化改进等流程保证数据的合规性,促进数据价值的实现;

2) 风险可控:组织应建立、评估数据风险管理机制,确保数据风险不超过组织的风险偏好和风险容忍度,评估、指导和监督风险管理的实施;

3) 价值实现:组织应形成统一的数据驱动和数据价值理念,完善价值实现相关要素的定义、应用、调整,助力组织加快实现数字化进程。

数据治理管控目标是提高组织数据的质量(准确性和完整性),保证数据的安全性(保密性、完整性及可用性),推进数字资源在组织各机构部门间的高效整合、对接和共享,从而提升组织整体数字化水平,充分发挥数据资产价值。

 

数据治理的概念与意义目标


二、数据治理需求分析

数据资产意识在各组织机构中已经得到充分的认可,但目前各组织单位对数据资产的管控状况依旧不容乐观,制约了组织数据质量的进一步提高,同时也限制了数据价值的实现。根据行业信息化与数据治理发展现状,各组织单位现阶段对数据治理的需求主要存在以下五大方面:

1) 需要专门对数据治理进行监督和控制的组织。信息系统的建设和管理职能分散在各部门,致使数据管理的职责分散,权责不明确。组织机构各部门关注数据的角度不一样,缺少一个组织从全局的视角对数据进行管理,导致无法建立统一的数据管理规程、标准等,相应的数据管理监督措施无法得到落实。组织机构的数据考核体系也尚未建立,无法保障数据管理标准和规程的有效执行。

2) 需要规范统一的数据标准和数据模型。组织机构为应对迅速变化的市场和社会需求,逐步建立了各自的信息系统,各部门站在各自的立场生产、使用和管理数据,使得数据分散在不同的部门和信息系统中,缺乏统一的数据规划、可信的数据来源和数据标准,导致数据不规范、不一致、冗余、无法共享等问题出现,组织机构各部门对数据的理解难以应用一致的语言来描述,导致理解不一致。

3) 需要规范统一的主数据。组织机构核心系统间的人员等主要信息并不是存储在一个独立的系统中,或者不是通过统一的业务管理流程在系统间维护。缺乏主数据管理,使得主数据在整个业务范围内保持一致、完整和可控无法保障,从而无法保证数据的准确性。

4) 需要统一集团化的数据质量管控体系。当前现状中数据质量管理主要由各组织部门分头进行;跨部门跨机构的数据质量沟通机制不完善;缺乏清晰的跨部门跨机构的数据质量管控标准与规范,数据分析随机性强,存在业务需求不清的现象,影响数据质量;数据的自动采集尚未全面实现,处理过程存在人为干预问题,大多数部门存在数据质量管理人员不足、知识与经验不够、监管方式不全面等问题;缺乏完善的数据质量管控流程和系统支撑能力。

5) 需要基于数据全生命周期的治理。目前,大型集团或政务单位,数据的产生、使用、维护、备份到过时被销毁的数据生命周期管理规范和流程还不完善,不能确定过期和无效数据的识别条件,且非结构化数据未纳入数据生命周期的管理范畴;无信息化工具支撑数据生命周期状态的查询,未有效利用元数据管理。

 


发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~
展开